A sharp estimate for extremal functions
نویسندگان
چکیده
منابع مشابه
Extremal functions for the sharp L2− Nash inequality
This paper is in the spirit of several works on best constants problems in Sobolev type inequalities. A general reference on this subject is the recent book of Hebey [9]. These questions have many interests. At first, they are at the origin of the resolution of famous geometrical problems as Yamabe problem. More generally, they show how geometry and analysis interact on Riemannian manifolds and...
متن کاملSharp estimate of logarithmic coefficients of certain class of analytic functions
This article has no abstract.
متن کاملA Sharp Bilinear Restriction Estimate for Paraboloids
X iv :m at h/ 02 10 08 4v 2 [ m at h. C A ] 1 3 D ec 2 00 2 Abstract. Recently Wolff [28] obtained a sharp L2 bilinear restriction theorem for bounded subsets of the cone in general dimension. Here we adapt the argument of Wolff to also handle subsets of “elliptic surfaces” such as paraboloids. Except for an endpoint, this answers a conjecture of Machedon and Klainerman, and also improves upon ...
متن کاملA Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator
We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2000
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-00-05319-3